论文标题
关于BMS组的各种扩展
On the Various Extensions of the BMS Group
论文作者
论文摘要
Bondi-Metzner-Sachs-van der Burg(BMS)组是渐近平坦的散射平面的渐近对称性组。它最近在平坦全息和重力结构的背景下获得了新的兴趣。在本文中,我们研究了在四个维度上考虑BMS组扩展的后果。特别是,我们将协变相空间方法应用于一类一级规格理论,其中包括一般相对论的cartan公式,并将此分析指定为渐近平坦的时空中的重力。此外,我们将无穷大的互合结构重新归一化,以获得与平滑级别相关的广义BMS电荷代数。然后,我们研究重力场的真空结构,这使我们能够将所谓的超升高转换与速度踢/折射记忆效应联系起来。之后,我们提出了一组新的边界条件在本地(a)ds时空中提出了一组,该边界条件在存在非散布宇宙学常数的情况下导致BMS组的一个版本,称为$λ$ -BMS渐近对称性组。我们使用全息重新归一化程序和邦迪和费弗曼 - 格雷厄姆仪之间的差异性,我们构建了$λ$ -BMS的相位空间,并表明它在平坦极限中降低了一般的BMS组之一。
The Bondi-Metzner-Sachs-van der Burg (BMS) group is the asymptotic symmetry group of radiating asymptotically flat spacetimes. It has recently received renewed interest in the context of the flat holography and the infrared structure of gravity. In this thesis, we investigate the consequences of considering extensions of the BMS group in four dimensions with superrotations. In particular, we apply the covariant phase space methods on a class of first order gauge theories that includes the Cartan formulation of general relativity and specify this analysis to gravity in asymptotically flat spacetime. Furthermore, we renormalize the symplectic structure at null infinity to obtain the generalized BMS charge algebra associated with smooth superrotations. We then study the vacuum structure of the gravitational field, which allows us to relate the so-called superboost transformations to the velocity kick/refraction memory effect. Afterward, we propose a new set of boundary conditions in asymptotically locally (A)dS spacetime that leads to a version of the BMS group in the presence of a non-vanishing cosmological constant, called the $Λ$-BMS asymptotic symmetry group. Using the holographic renormalization procedure and a diffeomorphism between Bondi and Fefferman-Graham gauges, we construct the phase space of $Λ$-BMS and show that it reduces to the one of the generalized BMS group in the flat limit.