论文标题
使用端到端深度学习快速超声成像
Fast ultrasonic imaging using end-to-end deep learning
论文作者
论文摘要
在许多临床和工业应用中使用的超声成像算法包括三个步骤:数据预处理,图像形成和图像后处理步骤。为了效率,图像形成通常依赖于基础波物理的近似。一个突出的例子是基于反射率的超声成像中使用的延迟和-AM(DAS)算法。最近,深度神经网络(DNN)分别用于数据预处理和图像后处理步骤。在这项工作中,我们提出了一种新颖的深度学习体系结构,该架构整合了所有三个步骤,以实现端到端的培训。我们检查将DAS图像形成方法转换为网络层,该方法将预处理层连接到执行分割的图像后处理层。我们证明,这种综合方法明显优于单独训练的顺序方法。虽然仅在模拟数据上执行网络培训和评估,但我们还从非破坏性测试方案中展示了方法的潜力。
Ultrasonic imaging algorithms used in many clinical and industrial applications consist of three steps: A data pre-processing, an image formation and an image post-processing step. For efficiency, image formation often relies on an approximation of the underlying wave physics. A prominent example is the Delay-And-Sum (DAS) algorithm used in reflectivity-based ultrasonic imaging. Recently, deep neural networks (DNNs) are being used for the data pre-processing and the image post-processing steps separately. In this work, we propose a novel deep learning architecture that integrates all three steps to enable end-to-end training. We examine turning the DAS image formation method into a network layer that connects data pre-processing layers with image post-processing layers that perform segmentation. We demonstrate that this integrated approach clearly outperforms sequential approaches that are trained separately. While network training and evaluation is performed only on simulated data, we also showcase the potential of our approach on real data from a non-destructive testing scenario.