论文标题
沟通效率的分布式本特征空间估计
Communication-efficient distributed eigenspace estimation
论文作者
论文摘要
分布式计算是扩展机器学习和数据科学算法以处理大量数据的标准方法。在这种情况下,避免机器之间的通信对于实现高性能是至关重要的。与其分发现有算法的计算,不如避免通信的常见做法是计算每台机器上的本地解决方案或参数估计,然后结合结果。在许多凸优化问题中,即使对本地解决方案的简单平均也可以很好地工作。但是,当本地解决方案不是唯一的时候,这些方案不起作用。光谱方法是此类问题的集合,其中解决方案是相关数据矩阵的主要不变子空间的正顺序碱基,这仅是旋转和反射的独特之处。在这里,我们开发了一种用于计算数据矩阵的领先不变子空间的通信效率分布式算法。我们的算法使用一种新颖的对齐方案,该方案可以最大程度地减少局部解决方案和参考溶液之间的距离,并且仅需要一轮通信。对于主要组件分析(PCA)的重要情况,我们表明我们的算法达到了与集中式估计器相似的错误率。我们提出了数字实验,证明了我们提出的算法在分布式PCA中的功效,以及解决方案表现出旋转对称性的其他问题,例如用于图数据的节点嵌入图和二次传感的光谱初始化。
Distributed computing is a standard way to scale up machine learning and data science algorithms to process large amounts of data. In such settings, avoiding communication amongst machines is paramount for achieving high performance. Rather than distribute the computation of existing algorithms, a common practice for avoiding communication is to compute local solutions or parameter estimates on each machine and then combine the results; in many convex optimization problems, even simple averaging of local solutions can work well. However, these schemes do not work when the local solutions are not unique. Spectral methods are a collection of such problems, where solutions are orthonormal bases of the leading invariant subspace of an associated data matrix, which are only unique up to rotation and reflections. Here, we develop a communication-efficient distributed algorithm for computing the leading invariant subspace of a data matrix. Our algorithm uses a novel alignment scheme that minimizes the Procrustean distance between local solutions and a reference solution, and only requires a single round of communication. For the important case of principal component analysis (PCA), we show that our algorithm achieves a similar error rate to that of a centralized estimator. We present numerical experiments demonstrating the efficacy of our proposed algorithm for distributed PCA, as well as other problems where solutions exhibit rotational symmetry, such as node embeddings for graph data and spectral initialization for quadratic sensing.