论文标题

分析Twitter语义网络:2018年意大利选举的案例

Analysing Twitter Semantic Networks: the case of 2018 Italian Elections

论文作者

Radicioni, Tommaso, Saracco, Fabio, Pavan, Elena, Squartini, Tiziano

论文摘要

社交媒体在塑造公民的政治观点方面起着关键作用。根据欧洲现成的计量计,每天采用在线社交网络的欧盟公民的比例从2010年的18%增加到2019年的48%。社交媒体与政治动态的发展之间的纠缠激发了研究人员的利益,以分析用户在线行为的分析 - 特别强调了在佩戴和echo -echo -chammers形成过程中群体的群体化。在这种情况下,人们主要致力于研究用户之间在线关系的研究,而语义方面的探索仍然不足。在本文中,我们旨在通过采用两步方法来填补这一空白。首先,我们确定了在2018年意大利选举中进行政治辩论动画的话语社区,因为他们具有相似的转发行为。其次,我们研究了通过每天监视它们引起的语义网络的结构演变来塑造其内部讨论的语义机制。除了指定意大利选举竞争的语义特征之外,我们的方法以两种主要方式创新了对在线政治讨论的研究。一方面,它通过实现植根于统计理论的方法来确保我们对社会语义结构的推论不会被任何关于丢失信息的任何不支持的假设所偏见;另一方面,它是完全自动化的,因为它不基于任何手动标签(根据用户的功能或其共享模式)。这些元素使我们的方法适用于任何Twitter讨论,而不论其语言或主题如何。

Social media play a key role in shaping citizens' political opinion. According to the Eurobarometer, the percentage of EU citizens employing online social networks on a daily basis has increased from 18% in 2010 to 48% in 2019. The entwinement between social media and the unfolding of political dynamics has motivated the interest of researchers for the analysis of users online behavior - with particular emphasis on group polarization during debates and echo-chambers formation. In this context, attention has been predominantly directed towards the study of online relations between users while semantic aspects have remained under-explored. In the present paper, we aim at filling this gap by adopting a two-steps approach. First, we identify the discursive communities animating the political debate in the run up of the 2018 Italian Elections as groups of users with a significantly-similar retweeting behavior. Second, we study the semantic mechanisms that shape their internal discussions by monitoring, on a daily basis, the structural evolution of the semantic networks they induce. Above and beyond specifying the semantic peculiarities of the Italian electoral competition, our approach innovates studies of online political discussions in two main ways. On the one hand, it grounds semantic analysis within users' behaviors by implementing a method, rooted in statistical theory, that guarantees that our inference of socio-semantic structures is not biased by any unsupported assumption about missing information; on the other, it is completely automated as it does not rest upon any manual labelling (either based on the users' features or on their sharing patterns). These elements make our method applicable to any Twitter discussion regardless of the language or the topic addressed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源