论文标题
量子重置模型的扰动分析
Perturbation Analysis of Quantum Reset Models
论文作者
论文摘要
本文致力于分析量子重置模型的lindblad操作员,描述了经过随机重置的三方量子系统的有效动力学。我们考虑由三个独立子系统组成的链,并由哈密顿术语结合。链条两端的两个子系统是由重置林金(Lindbladian)独立于彼此驱动的,而中心系统则由哈密顿人驱动。在耦合项上的一般假设下,我们证明存在扰动重置lindbladian的独特稳态,在耦合常数中分析。我们进一步分析了相应的CPTP Markov Semigroup的大时动力学,该动态描述了稳态的方法。我们用与现实的开放量子系统相对应的具体样本来说明这些结果。
This paper is devoted to the analysis of Lindblad operators of Quantum Reset Models, describing the effective dynamics of tri-partite quantum systems subject to stochastic resets. We consider a chain of three independent subsystems, coupled by a Hamiltonian term. The two subsystems at each end of the chain are driven, independently from each other, by a reset Lindbladian, while the center system is driven by a Hamiltonian. Under generic assumptions on the coupling term, we prove the existence of a unique steady state for the perturbed reset Lindbladian, analytic in the coupling constant. We further analyze the large times dynamics of the corresponding CPTP Markov semigroup that describes the approach to the steady state. We illustrate these results with concrete exemples corresponding to realistic open quantum systems.