论文标题

Gelfand-Kirillov猜想是一阶公式

Gelfand-Kirillov conjecture as a first-order formula

论文作者

Mariano, Hugo Luiz, Schwarz, João

论文摘要

令$σ$为(简化)根系。令$ \ mathsf {k} $为零特征的代数封闭字段,并考虑相应的semimple lie代数$ \ mathfrak {g} _ {\ mathsf {k},σ} $。然后,语言中有一个一阶句子$ \ mathcal {l} =(1,0,+,*, - )$的$,以至于对于特征性0的任何代数封闭的字段$ \ mathsf {k} $ 0 σ} $相当于$ acf_0 \ vdash ϕ_σ $。

Let $Σ$ be a (reduced) root system. Let $\mathsf{k}$ be an algebraically closed field of zero characteristic, and consider the corresponding semisimple Lie algebra $\mathfrak{g}_{\mathsf{k}, Σ}$. Then there is a first-order sentence $ϕ_Σ$ in the language $\mathcal{L}=(1,0,+,*,-)$ of rings such that, for any algebraically closed field $\mathsf{k}$ of characteristic 0, the validity of the Gelfand-Kirillov Conjecture for $\mathfrak{g}_{\mathsf{k}, Σ}$ is equivalent to $ACF_0 \vdash ϕ_Σ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源