论文标题
关于素的模块化平方根的分布
On the distribution of modular square roots of primes
论文作者
论文摘要
我们使用具有模块化平方根的双线性总和上的最新界限来研究解决方案的分布,以使得$ x^2 \ equiv p \ pmod q $与Primes $ p \ le P $和Integers $ q \ le Q $。这可以被视为杜克,弗里德兰德和伊瓦尼克的组合场景,仅在模量$ q $和邓恩,克尔,shparlinski和Zaharescu的平均值上只有超过$ p $。
We use recent bounds on bilinear sums with modular square roots to study the distribution of solutions to congruences $x^2 \equiv p \pmod q$ with primes $p\le P$ and integers $q \le Q$. This can be considered as a combined scenario of Duke, Friedlander and Iwaniec with averaging only over the modulus $q$ and of Dunn, Kerr, Shparlinski and Zaharescu with averaging only over $p$.