论文标题
PSO-PS:与粒子群优化的参数同步,用于深度神经网络的分布式训练
PSO-PS: Parameter Synchronization with Particle Swarm Optimization for Distributed Training of Deep Neural Networks
论文作者
论文摘要
参数更新是基于并行性的分布深度学习的重要阶段。同步方法被广泛用于分布式训练深神经网络(DNNS)。为了减少同步方法的通信和同步开销,请降低同步频率(例如,每$ n $迷你批次)是一种简单的方法。但是,它通常遭受不良的融合。在本文中,我们提出了一种将粒子群优化(PSO)集成到DNNS的分布式训练过程中的新算法,以自动计算新参数。在拟议的算法中,计算工作由粒子编码,DNN的权重和训练损耗由粒子属性建模。在每个同步阶段,PSO从所有工人收集的子权重来更新权重,而不是平均权重或梯度。为了验证所提出的算法的性能,实验是在两个常用的图像分类基准上进行的:MNIST和CIFAR10,并与以多个不同的同步配置的对等竞争对手进行了比较。实验结果证明了所提出的算法的竞争力。
Parameter updating is an important stage in parallelism-based distributed deep learning. Synchronous methods are widely used in distributed training the Deep Neural Networks (DNNs). To reduce the communication and synchronization overhead of synchronous methods, decreasing the synchronization frequency (e.g., every $n$ mini-batches) is a straightforward approach. However, it often suffers from poor convergence. In this paper, we propose a new algorithm of integrating Particle Swarm Optimization (PSO) into the distributed training process of DNNs to automatically compute new parameters. In the proposed algorithm, a computing work is encoded by a particle, the weights of DNNs and the training loss are modeled by the particle attributes. At each synchronization stage, the weights are updated by PSO from the sub weights gathered from all workers, instead of averaging the weights or the gradients. To verify the performance of the proposed algorithm, the experiments are performed on two commonly used image classification benchmarks: MNIST and CIFAR10, and compared with the peer competitors at multiple different synchronization configurations. The experimental results demonstrate the competitiveness of the proposed algorithm.