论文标题

混乱的量子方面和弹跳宇宙学的复杂性:两种模式单场挤压状态形式主义的研究

Quantum aspects of chaos and complexity from bouncing cosmology: A study with two-mode single field squeezed state formalism

论文作者

Bhargava, Parth, Choudhury, Sayantan, Chowdhury, Satyaki, Mishara, Anurag, Selvam, Sachin Panneer, Panda, Sudhakar, Pasquino, Gabriel D.

论文摘要

$电路〜复杂性$,一种众所周知的计算技术,最近已成为物理界的骨干,以探测量子场的混乱行为和随机量子波动。本文专门研究了宇宙中从两个众所周知的弹跳宇宙学解决方案的范式中出现的量子外观和量子混乱的研究。 $ cosine〜双曲线$和$指数$缩放因子模型。除$电路〜复杂性$外,我们还使用$ time〜订购〜相关性〜(otoc)$函数来探测宇宙在早期和后期的随机行为。特别是,我们使用宇宙学摄动理论中众所周知的两种模式挤压状态形式主义的技术作为我们计算目的的关键要素。为了给出适当的理论解释,该解释与观察观点一致,我们将尺度因子和电子折叠的数量用作动力学变量,而不是用于此计算的顺式时间。从这项研究中,我们发现反弹后的时期是最有趣的时期。尽管它可能不会立即可见,但是一旦将弹跳功能推送到当前时间尺度,就可以在$复杂性$中看到指数上升。我们还发现,在非常小的可接受误差范围内,从两种不同类型的成本函数计算出的复杂性之间的通用连接关系 - $ linearly〜加权$和$ Geodesic〜加权$与OTOC。此外,从从宇宙学模型获得的$复杂性$计算中,还使用限制在量子Lyapunov指数上的众所周知的MSS,$λ\ leq2π/β$用于混乱的饱和,我们估计在我们宇宙的平衡温度下,在我们的宇宙平均温度上的下限。最后,我们根据保形时间进行了粗略的估计时间。

$Circuit~ Complexity$, a well known computational technique has recently become the backbone of the physics community to probe the chaotic behaviour and random quantum fluctuations of quantum fields. This paper is devoted to the study of out-of-equilibrium aspects and quantum chaos appearing in the universe from the paradigm of two well known bouncing cosmological solutions viz. $Cosine~ hyperbolic$ and $Exponential$ models of scale factors. Besides $circuit~ complexity$, we use the $Out-of-Time~ Ordered~ correlation~ (OTOC)$ functions for probing the random behaviour of the universe both at early and the late times. In particular, we use the techniques of well known two-mode squeezed state formalism in cosmological perturbation theory as a key ingredient for the purpose of our computation. To give an appropriate theoretical interpretation that is consistent with the observational perspective we use the scale factor and the number of e-foldings as a dynamical variable instead of conformal time for this computation. From this study, we found that the period of post bounce is the most interesting one. Though it may not be immediately visible, but an exponential rise can be seen in the $complexity$ once the post bounce feature is extrapolated to the present time scales. We also find within the very small acceptable error range a universal connecting relation between Complexity computed from two different kinds of cost functionals-$linearly~ weighted$ and $geodesic~ weighted$ with the OTOC. Furthermore, from the $complexity$ computation obtained from both the cosmological models and also using the well known MSS bound on quantum Lyapunov exponent, $λ\leq 2π/β$ for the saturation of chaos, we estimate the lower bound on the equilibrium temperature of our universe at late time scale. Finally, we provide a rough estimation of the scrambling time in terms of the conformal time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源