论文标题
实时功能重归其化组的光谱函数
Spectral functions from the real-time functional renormalization group
论文作者
论文摘要
我们采用在Schwinger-keldysh轮廓上制定的功能重归其化组方法来计算标量场理论中的实时相关函数。我们提供了对形式主义的详细描述,讨论用于实时计算的合适截断方案以及自我一致解决光谱函数的流程方程的数值程序。随后,我们讨论了与其他扰动和非扰动方法计算光谱函数的关系,并在$ d = 0+1 $尺寸中提出了详细的比较和基准。
We employ the functional renormalization group approach formulated on the Schwinger-Keldysh contour to calculate real-time correlation functions in scalar field theories. We provide a detailed description of the formalism, discuss suitable truncation schemes for real-time calculations as well as the numerical procedure to self-consistently solve the flow equations for the spectral function. Subsequently, we discuss the relations to other perturbative and non-perturbative approaches to calculate spectral functions, and present a detailed comparison and benchmark in $d=0+1$ dimensions.