论文标题

强壮 - 索波尔方程的分叉分析

Bifurcation analysis of the Hardy-Sobolev equation

论文作者

Bonheure, Denis, Casteras, Jean-Baptiste, Gladiali, Francesca

论文摘要

在本文中,我们证明存在多种非radial解决方案,用于Hardy-Sobolev方程$$ \ begin {cases}-ΔU-\ displayStyle \fracγ{| x |^2} u = \ displayStyle \ displayStyle \ frac \ frac {1}} \ Mathbb {r}^n \ setMinus \ {0 \},\\ u \ geq 0,&\ end {cases} $$ 其中$ n \ geq 3 $,$ s \ in [0,2)$,$ p_s = \ frac {2(n-s)} {n-2} $和$γ\ in( - \ infty,\ frac {(n-2)^2} 4)$。我们扩展了E.N.的结果舞者F. Gladiali,M。Grossi,Proc。罗伊。 Soc。爱丁堡教派。 147(2017)仅考虑$ s = 0 $的情况。此外,由于解决方案的单调性特性,我们将两个非义务解决方案的两个分支分开。

In this paper, we prove existence of multiple non-radial solutions to the Hardy-Sobolev equation $$\begin{cases} -Δu-\displaystyle\frac γ{|x|^2}u=\displaystyle\frac{1}{|x|^s}|u|^{p_s-2}u & \text{ in } \mathbb{R}^N\setminus\{0\},\\ u\geq 0, & \end{cases}$$ where $N\geq 3$, $s\in[0,2)$, $p_s=\frac{2(N-s)}{N-2}$ and $γ\in (-\infty,\frac{(N-2)^2} 4)$. We extend results of E.N. Dancer, F. Gladiali, M. Grossi, Proc. Roy. Soc. Edinburgh Sect. A 147 (2017) where only the case $s=0$ is considered. Moreover, thanks to monotonicity properties of the solutions, we separate two branches of non-radial solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源