论文标题

结合数据同化和机器学习来推断未解决的比例参数化

Combining data assimilation and machine learning to infer unresolved scale parametrisation

论文作者

Brajard, Julien, Carrassi, Alberto, Bocquet, Marc, Bertino, Laurent

论文摘要

近年来,已经提出了机器学习(ML)来设计动态数值模型中未解决过程的数据驱动参数。在大多数情况下,ML培训利用高分辨率模拟提供了密集,无噪声的目标状态。我们的目标是在嘈杂和稀疏观测的现实情况下,超越使用直接数据的高分辨率模拟和基于训练ML的参数化的使用。 这项工作中提出的算法是一个两步过程。首先,应用数据同化(DA)技术从截断的模型中估算系统的完整状态。截断模型的未解决部分被视为DA系统中的模型误差。在第二步中,ML用于模拟未解决的部分,这是系统状态的模型误差的预测指标。最后,将基于ML的参数模型添加到物理核心截断模型中以产生混合模型。 所提出的方法的DA组分依赖于集合卡尔曼滤波器,而ML参数化由神经网络表示。该方法应用于两尺度的洛伦兹模型,并将其用于减小的海洋大气模型MAOOAM。我们表明,在这两种情况下,混合模型都以比截短模型更好的技能产生预测。此外,与截短模型相比,系统的吸引子由混合模型明显更好地代表。

In recent years, machine learning (ML) has been proposed to devise data-driven parametrisations of unresolved processes in dynamical numerical models. In most cases, the ML training leverages high-resolution simulations to provide a dense, noiseless target state. Our goal is to go beyond the use of high-resolution simulations and train ML-based parametrisation using direct data, in the realistic scenario of noisy and sparse observations. The algorithm proposed in this work is a two-step process. First, data assimilation (DA) techniques are applied to estimate the full state of the system from a truncated model. The unresolved part of the truncated model is viewed as a model error in the DA system. In a second step, ML is used to emulate the unresolved part, a predictor of model error given the state of the system. Finally, the ML-based parametrisation model is added to the physical core truncated model to produce a hybrid model. The DA component of the proposed method relies on an ensemble Kalman filter while the ML parametrisation is represented by a neural network. The approach is applied to the two-scale Lorenz model and to MAOOAM, a reduced-order coupled ocean-atmosphere model. We show that in both cases the hybrid model yields forecasts with better skill than the truncated model. Moreover, the attractor of the system is significantly better represented by the hybrid model than by the truncated model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源