论文标题
二次重力的真空衰减
Vacuum decay in quadratic gravity
论文作者
论文摘要
亚稳态状态在零温度下通过量子隧穿的衰减,以指数较小的速率,这取决于Coleman-de Luccia Instanton,也称为Bounce。在某些理论中,弹跳可能不存在,或者其对壳的作用可能是不确定或无限的,从而阻碍了真空衰减过程。在本文中,我们在与真实标量场相互作用的重力理论中测试了这种可能性。我们考虑一个爱因斯坦 - 希尔伯特(Einstein-Hilbert)的术语,具有非最低耦合标量场和二次RICCI标量贡献。为了解决这个问题,我们使用了一种新的分析方法,我们证明,弹跳上的标量场在大欧几里得半径上具有普遍的行为,几乎独立于潜力。我们的主要结果是二次ricci标量可以防止衰减,而不管动作中的其他术语如何。
Metastable states decay at zero temperature through quantum tunneling at an exponentially small rate, which depends on the Coleman-de Luccia instanton, also known as bounce. In some theories, the bounce may not exist or its on-shell action may be ill-defined or infinite, thus hindering the vacuum decay process. In this paper, we test this possibility in modified theories of gravity interacting with a real scalar field. We consider an Einstein-Hilbert term with a non-minimally coupled scalar field and a quadratic Ricci scalar contribution. To tackle the problem we use a new analytic method, with which we prove that the scalar field on the bounce has a universal behaviour at large Euclidean radii, almost independently of the potential. Our main result is that the quadratic Ricci scalar prevents the decay, regardless of the other terms in the action.