论文标题
技术注意:快速而整体的原型临床质子X线摄影系统优化了用于铅笔梁扫描
Technical Note: A fast and monolithic prototype clinical proton radiography system optimized for pencil beam scanning
论文作者
论文摘要
目的:基于建立良好的快速闪烁技术的质子成像系统,以低成本和复杂性来实现高性能,并有可能直接翻译成临床使用。方法:系统通过一个(x,y)闪烁的光纤跟踪器平面在物体的下游和下游跟踪单个质子,然后进入13 cm厚的闪烁块残留能量探测器。跟踪器平面中的纤维被多路复用到硅光电层流(SIPM)中,以减少电子通道的数量。来自残留能量检测器的光信号由16个光电倍增管(PMTS)收集。每个事件中只有四个来自PMT的信号,这允许快速读数。已经开发了PMT信号的强大校准方法,以获得准确的质子图像。使用多个输入能量的患者特异性扫描模式的开发可以使图像以最小的过量剂量传递给患者而产生图像。结果:能量探测器中信号的校准产生由固有范围散布的限制的准确剩余测量值。我们用质子X光片测量了一块固体水(6.10 mm的物理厚度)的水等效厚度(湿)。块中所有像素的平均湿湿为6.13 cm(SD 0.02 cm)。使用多个输入能的患者特异性扫描模式的使用可以用紧凑范围检测器进行成像。结论:我们已经开发了一种原型临床质子射线照相系统,用于质子放射治疗中的预处理成像。我们已经优化了用于铅笔梁扫描系统的系统,并且与以前的设计相比,大小和复杂性的降低。
Purpose: To demonstrate a proton imaging system based on well-established fast scintillator technology to achieve high performance with low cost and complexity, with the potential of a straightforward translation into clinical use. Methods: The system tracks individual protons through one (X, Y) scintillating fiber tracker plane upstream and downstream of the object and into a 13 cm-thick scintillating block residual energy detector. The fibers in the tracker planes are multiplexed into silicon photomultipliers (SiPMs) to reduce the number of electronics channels. The light signal from the residual energy detector is collected by 16 photomultiplier tubes (PMTs). Only four signals from the PMTs are output from each event, which allows for fast signal readout. A robust calibration method of the PMT signal to residual energy has been developed to obtain accurate proton images. The development of patient-specific scan patterns using multiple input energies allows for an image to be produced with minimal excess dose delivered to the patient. Results: The calibration of signals in the energy detector produces accurate residual range measurements limited by intrinsic range straggling. We measured the water-equivalent thickness (WET) of a block of solid water (physical thickness of 6.10 mm) with a proton radiograph. The mean WET from all pixels in the block was 6.13 cm (SD 0.02 cm). The use of patient-specific scan patterns using multiple input energies enables imaging with a compact range detector. Conclusions: We have developed a prototype clinical proton radiography system for pretreatment imaging in proton radiation therapy. We have optimized the system for use with pencil beam scanning systems and have achieved a reduction of size and complexity compared to previous designs.