论文标题

响应选择模型真的知道下一步是什么吗?多转响应选择的话语操纵策略

Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection

论文作者

Whang, Taesun, Lee, Dongyub, Oh, Dongsuk, Lee, Chanhee, Han, Kijong, Lee, Dong-hun, Lee, Saebyeok

论文摘要

在本文中,我们研究了在基于检索的多转模式系统中使用用户和系统话语历史记录的最佳响应的任务。最近,预先训练的语言模型(例如Bert,Roberta和Electra)在各种自然语言处理任务上显示出显着改善。此和类似的响应选择任务也可以使用此类语言模型来解决 - 响应二进制分类任务(响应二进制分类任务)。尽管使用这种方法的现有作品成功获得了最新的结果,但我们观察到以这种方式训练的语言模型倾向于根据历史和候选人的相关性做出预测,而忽略了多转向对话系统的顺序性质。这表明,仅响应选择任务不足以学习话语之间的时间依赖性。为此,我们提出了话语操纵策略(UMS)来解决这个问题。具体而言,UMS由几种策略(即插入,删除和搜索)组成,这些策略有助于响应选择模型保持对话框的连贯性。此外,UMS是不需要额外注释的自制方法,因此很容易被纳入现有方法中。跨多种语言和模型进行了广泛的评估表明,UMS在教授对话的一致性方面非常有效,这导致模型推动了在多个公共基准数据集上具有明显利润率的最先进的模型。

In this paper, we study the task of selecting the optimal response given a user and system utterance history in retrieval-based multi-turn dialog systems. Recently, pre-trained language models (e.g., BERT, RoBERTa, and ELECTRA) showed significant improvements in various natural language processing tasks. This and similar response selection tasks can also be solved using such language models by formulating the tasks as dialog--response binary classification tasks. Although existing works using this approach successfully obtained state-of-the-art results, we observe that language models trained in this manner tend to make predictions based on the relatedness of history and candidates, ignoring the sequential nature of multi-turn dialog systems. This suggests that the response selection task alone is insufficient for learning temporal dependencies between utterances. To this end, we propose utterance manipulation strategies (UMS) to address this problem. Specifically, UMS consist of several strategies (i.e., insertion, deletion, and search), which aid the response selection model towards maintaining dialog coherence. Further, UMS are self-supervised methods that do not require additional annotation and thus can be easily incorporated into existing approaches. Extensive evaluation across multiple languages and models shows that UMS are highly effective in teaching dialog consistency, which leads to models pushing the state-of-the-art with significant margins on multiple public benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源