论文标题

动荡的气泡分解级联。第2部分。断裂的数值模拟

The turbulent bubble break-up cascade. Part 2. Numerical simulations of breaking waves

论文作者

Chan, Wai Hong Ronald, Johnson, Perry L., Moin, Parviz, Urzay, Javier

论文摘要

破裂波会产生随着时间的流逝而演变的气泡大小的分布。了解这种分布如何发展对于海事和气候研究具有实际重要性。第1部分开发的分析框架研究了这种演化如何受气泡质量通量从大型气泡大小到小气泡的尺寸,这取决于分手事件的速度和儿童气泡大小的分布。这些统计数据在第2部分中通过模拟断裂波,识别和跟踪各个气泡及其分裂事件来衡量作为集合平均时间的时间功能。分手动态在统计上是不稳定的,并且确定了两个具有不同特征的间隔。在第一个间隔中,耗散速率和气泡质量通量是准稳态的,第1部分的理论分析得到了所有观察到的统计数据的支持,包括预期的-10/3幂律指数,用于超级尺度尺寸分布。在相应的气泡质量通量中观察到了强烈的局部性,从而支持了超辛兹尺度的分手级联。在第二个时间间隔内,耗散率衰减,并且随着小气泡和中等大小的气泡的人口越来越多,气泡质量通量增加。这种通量以级联样的行为仍然很局部,但是由于小气泡也更快地耗尽了尺寸分布的主要幂律指数增加到-8/3。这表明在断裂波演化的不同阶段,不同的物理机制的出现,尽管大小本地分裂仍然是一个主题。第1部分和第2部分提出了一个分析工具包,用于人口平衡分析以两相流量分析。

Breaking waves generate a distribution of bubble sizes that evolves over time. Knowledge of how this distribution evolves is of practical importance for maritime and climate studies. The analytical framework developed in Part 1 examined how this evolution is governed by the bubble-mass flux from large to small bubble sizes, which depends on the rate of break-up events and the distribution of child bubble sizes. These statistics are measured in Part 2 as ensemble-averaged functions of time by simulating ensembles of breaking waves, and identifying and tracking individual bubbles and their break-up events. The break-up dynamics are seen to be statistically unsteady, and two intervals with distinct characteristics were identified. In the first interval, the dissipation rate and bubble-mass flux are quasi-steady, and the theoretical analysis of Part 1 is supported by all observed statistics, including the expected -10/3 power-law exponent for the super-Hinze-scale size distribution. Strong locality is observed in the corresponding bubble-mass flux, supporting the presence of a super-Hinze-scale break-up cascade. In the second interval, the dissipation rate decays, and the bubble-mass flux increases as small- and intermediate-sized bubbles become more populous. This flux remains strongly local with cascade-like behaviour, but the dominant power-law exponent for the size distribution increases to -8/3 as small bubbles are also depleted more quickly. This suggests the emergence of different physical mechanisms during different phases of the breaking-wave evolution, although size-local break-up remains a dominant theme. Parts 1 and 2 present an analytical toolkit for population balance analysis in two-phase flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源