论文标题
欧几里得空间的薄色子集中的简单
Simplices in thin subsets of Euclidean spaces
论文作者
论文摘要
令$ \ de $为$ k $顶点上的非分类单纯形。我们证明存在一个阈值$ s_k <k $,因此Hausdorff Dimension $ dim \ \ dim \,a \ geq s_k $的任何集合$ a \ subs \ r^k $都必须包含类似的单纯副本。
Let $\De$ be a non-degenerate simplex on $k$ vertices. We prove that there exists a threshold $s_k<k$ such that any set $A\subs \R^k$ of Hausdorff dimension $dim\,A\geq s_k$ necessarily contains a similar copy of the simplex $\De$.