论文标题

SWP叶:一种基于深CNN的植物叶识别的新型多阶段方法

SWP-LeafNET: A novel multistage approach for plant leaf identification based on deep CNN

论文作者

Beikmohammadi, Ali, Faez, Karim, Motallebi, Ali

论文摘要

现代的科学和技术进步使植物学家可以使用基于计算机视觉的方法来进行植物识别任务。这些方法有自己的挑战。叶片分类是针对自动识别植物物种执行的计算机视觉任务,这是由于叶片形态的变化,包括其大小,质地,形状和静脉,这是一个严重的挑战。由于普及和成功实施图像分析,对象识别和语音识别,研究人员最近越来越倾向于基于深度学习的方法,而不是基于传统特征的方法。 在本文中,要拥有一个可解释和可靠的系统,植物学家的行为是通过提出一种通过三个基于深度学习的模型开发的最大行为相似性的高效方法来建模的。对三个模型的不同层进行可视化,以确保对植物学家的行为进行准确的建模。第一和第二型型号是从头开始设计的。关于第三个模型,采用了预培训的MobilenetV2与转移学习技术一起使用。在两个众所周知的数据集上评估了所提出的方法:Flavia和Malayakew。根据比较分析,建议的方法比手工制作的特征提取方法和其他深度学习技术更准确,而精度为99.67%和99.81%。与具有自己特定复杂性并依赖数据集的传统技术不同,所提出的方法不需要手工制作的特征提取。同样,与其他深度学习技术相比,它提高了准确性。此外,SWP叶出现的分布且比其他方法要快得多,因为使用了较少的参数,因此异步使用了较少的参数。

Modern scientific and technological advances allow botanists to use computer vision-based approaches for plant identification tasks. These approaches have their own challenges. Leaf classification is a computer-vision task performed for the automated identification of plant species, a serious challenge due to variations in leaf morphology, including its size, texture, shape, and venation. Researchers have recently become more inclined toward deep learning-based methods rather than conventional feature-based methods due to the popularity and successful implementation of deep learning methods in image analysis, object recognition, and speech recognition. In this paper, to have an interpretable and reliable system, a botanist's behavior is modeled in leaf identification by proposing a highly-efficient method of maximum behavioral resemblance developed through three deep learning-based models. Different layers of the three models are visualized to ensure that the botanist's behavior is modeled accurately. The first and second models are designed from scratch. Regarding the third model, the pre-trained architecture MobileNetV2 is employed along with the transfer-learning technique. The proposed method is evaluated on two well-known datasets: Flavia and MalayaKew. According to a comparative analysis, the suggested approach is more accurate than hand-crafted feature extraction methods and other deep learning techniques in terms of 99.67% and 99.81% accuracy. Unlike conventional techniques that have their own specific complexities and depend on datasets, the proposed method requires no hand-crafted feature extraction. Also, it increases accuracy as compared with other deep learning techniques. Moreover, SWP-LeafNET is distributable and considerably faster than other methods because of using shallower models with fewer parameters asynchronously.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源