论文标题
投资组合的决策和大脑反应通过CEAD方法
Portfolio Decisions and Brain Reactions via the CEAD method
论文作者
论文摘要
决策可以是一个复杂的过程,需要集成几种选择选项的属性。了解(不确定)投资决策的神经过程是神经经济学的重要主题。我们分析了用于刺激相关效应的投资决策研究中的功能磁共振成像(fMRI)数据。我们提出了一种用于识别激活大脑区域的新技术:群集,估计,激活和决策(CEAD)方法。我们的分析集中在体素而不是体素单元上。因此,与经常使用的常规线性模型(GLM)相比,我们在测试单元中实现了更高的信号与噪声比。我们建议通过应用空间约束的光谱聚类首先进行脑部分割。然后,每个群集中的信息可以通过柔性动态半参数因子模型(DSFM)尺寸降低技术提取,并最终测试条件之间的激活差异。这种群集,估计,激活和决策序列允许对局部fMRI信号进行无模型分析。在基于DSFM的时间序列上应用GLM会导致选择选择的风险与前岛和背部前额叶前额叶皮层中fMRI信号的变化之间存在显着相关性。此外,DSFM时间序列中与决策相关反应的个体差异预测了以平均方差模型框架建模的风险态度的个体差异。
Decision making can be a complex process requiring the integration of several attributes of choice options. Understanding the neural processes underlying (uncertain) investment decisions is an important topic in neuroeconomics. We analyzed functional magnetic resonance imaging (fMRI) data from an investment decision study for stimulus-related effects. We propose a new technique for identifying activated brain regions: Cluster, Estimation, Activation and Decision (CEAD) method. Our analysis is focused on clusters of voxels rather than voxel units. Thus, we achieve a higher signal to noise ratio within the unit tested and a smaller number of hypothesis tests compared with the often used General Linear Model (GLM). We propose to first conduct the brain parcellation by applying spatially constrained spectral clustering. The information within each cluster can then be extracted by the flexible Dynamic Semiparametric Factor Model (DSFM) dimension reduction technique and finally be tested for differences in activation between conditions. This sequence of Cluster, Estimation, Activation and Decision admits a model-free analysis of the local fMRI signal. Applying a GLM on the DSFM-based time series resulted in a significant correlation between the risk of choice options and changes in fMRI signal in the anterior insula and dorsomedial prefrontal cortex. Additionally, individual differences in decision-related reactions within the DSFM time series predicted individual differences in risk attitudes as modeled with the framework of the mean-variance model.