论文标题
计算椭圆曲线,有理$ n $ n $ n $ n $发育
Counting elliptic curves with a rational $N$-isogeny for small $N$
论文作者
论文摘要
我们计算有限制的幼稚高度的理性椭圆曲线的数量,这些曲线具有合理的$ n $发育性,以$ n \ in \ in \ {2,3,4,5,6,6,8,9,12,12,16,16,18 \} $。对于一些$ n $,这是通过概括Harron和Snowden的方法来完成的。在其余情况下,我们使用Ellenberg,Satriano和Zureick-Brown的框架,其中椭圆曲线的天真高度是模量堆栈上相应点的高度。
We count the number of rational elliptic curves of bounded naive height that have a rational $N$-isogeny, for $N \in \{2,3,4,5,6,8,9,12,16,18\}$. For some $N$, this is done by generalizing a method of Harron and Snowden. For the remaining cases, we use the framework of Ellenberg, Satriano and Zureick-Brown, in which the naive height of an elliptic curve is the height of the corresponding point on a moduli stack.