论文标题
根部树地图的代数方面
Algebraic aspects of rooted tree maps
论文作者
论文摘要
基于植根树的Connes-Kreimer Hopf代数,将根的树地图定义为两个不确定的非交通性多项式代数上的线性图。众所周知,它们诱导多个Zeta值的线性关系。在本文中,我们通过与谐波代数有关的根树图的一些基本代数特性。我们还将反码图描述为特殊地图$τ$的共轭。
Based on the Connes--Kreimer Hopf algebra of rooted trees, the rooted tree maps are defined as linear maps on noncommutative polynomial algebra in two indeterminates. It is known that they induce a large class of linear relations for multiple zeta values. In this paper, we investigate some basic algebraic properties of rooted tree maps by relating to the harmonic algebra. We also characterize the antipode maps as the conjugation by the special map $τ$.