论文标题

算术进展中对共轭类规模的限制

Restrictions on sets of conjugacy class sizes in arithmetic progressions

论文作者

Camina, Alan R., Camina, Rachel D.

论文摘要

我们继续进行研究,该研究始于[3]和[4],这些调查是有限的群体,其一组非平凡的共轭类规模构成了算术进展。令$ g $为有限组,并表示$ g $ $ {\ rm cs}(g)$的共轭类规模的集合。满足$ {\ rm cs}(g)= \ {1,2,4,6 \} $和$ \ {1,2,4,6,8 \} $的有限组分别在[4]和[3]中分类,我们分别通过以下来证明这些示例是特殊的。存在一个有限的$ g $,使得$ {\ rm cs}(g)= \ {1,2^α,2^{α+1},2^α3\} $,仅当$α= 1 $时。此外,存在一个有限的$ g $,使得$ {\ rm cs}(g)= \ {1,2^α,2^{α+1},2^α3,2^α3,2^{α+2}} \ \} $ and $α$和$α$是奇数If y If $ nif $α= 1 $。

We continue the investigation, that began in [3] and [4], into finite groups whose set of nontrivial conjugacy class sizes form an arithmetic progression. Let $G$ be a finite group and denote the set of conjugacy class sizes of $G$ by ${\rm cs}(G)$. Finite groups satisfying ${\rm cs}(G) = \{1,2,4,6\}$ and $\{1,2,4,6,8\}$ are classified in [4] and [3], respectively, we demonstrate these examples are rather special by proving the following. There exists a finite group $G$ such that ${\rm cs}(G) = \{1, 2^α, 2^{α+1}, 2^α3 \}$ if and only if $α=1$. Furthermore, there exists a finite group $G$ such that ${\rm cs}(G) = \{1, 2^α, 2^{α+1}, 2^α3, 2^{α+2}\}$ and $α$ is odd if and only if $α=1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源