论文标题

没有带电标质头发的黑洞的内摩恩定理

No Inner-Horizon Theorem for Black Holes with Charged Scalar Hairs

论文作者

Cai, Rong-Gen, Li, Li, Yang, Run-Qiu

论文摘要

我们为带电标质毛发的黑洞建立了一个无内的定理。考虑到具有带电标量场的一般重力理论,我们证明没有内部凯奇的内在地平线,对于具有非平凡标量头发的球形和平面黑洞。毛茸茸的黑洞接近室内晚期的巨型奇异性。该结果独立于标量电势的形式以及空间的渐近边界。我们证明,当标量头发的动力学术语占主导地位时,奇异性附近的几何形状会采取通用的卡斯纳形式,而当标量对背景变得重要时,发现与卡斯纳形式不同的新型行为会发现。对于双曲线的情况,我们表明,毛茸茸的黑洞最多只能具有一个内在的地平线,并且出现了一个具有内部视野的具体示例。所有这些特征也适用于爱因斯坦重力以及中性标量。

We establish a no inner-horizon theorem for black holes with charged scalar hairs. Considering a general gravitational theory with a charged scalar field, we prove that there exists no inner Cauchy horizon for both spherical and planar black holes with non-trivial scalar hair. The hairy black holes approach to a spacelike singularity at late interior time. This result is independent of the form of scalar potentials as well as the asymptotic boundary of spacetimes. We prove that the geometry near the singularity takes a universal Kasner form when the kinetic term of the scalar hair dominates, while novel behaviors different from the Kasner form are uncovered when the scalar potential become important to the background. For the hyperbolic horizon case, we show that hairy black hole can only has at most one inner horizon, and a concrete example with an inner horizon is presented. All these features are also valid for the Einstein gravity coupled with neutral scalars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源