论文标题

生成器与分段:伪健康合成

Generator Versus Segmentor: Pseudo-healthy Synthesis

论文作者

Yunlong, Zhang, Chenxin, Li, Xin, Lin, Liyan, Sun, Yihong, Zhuang, Yue, Huang, Xinghao, Ding, Xiaoqing, Liu, Yizhou, Yu

论文摘要

本文研究了伪健康合成的问题,该问题被定义为从病理学中综合了特定于病理学的图像。为此任务开发了基于生成对抗网络(GAN)的最新方法。但是,这些方法将不可避免地属于保持特定于主题的身份和产生健康的外观之间的权衡。为了克服这一挑战,我们提出了一种新颖的对抗训练制度,即发电机与分段(GVS),以减轻分裂和争夺策略的权衡。我们进一步考虑了整个训练中分段的泛化性能恶化,并通过使转换良好的像素促进它来促进它,从而发展出像素的加权损失。此外,我们提出了一个新的指标,以测量合成图像的健康状况。公共数据集批量上的定性和定量实验表明,所提出的方法的表现优于现有方法。此外,我们还证明了我们方法在数据集效果上的有效性。我们的实施和预培训的网络可在https://github.com/au3c2/generator-versus-sementor上公开获得。

This paper investigates the problem of pseudo-healthy synthesis that is defined as synthesizing a subject-specific pathology-free image from a pathological one. Recent approaches based on Generative Adversarial Network (GAN) have been developed for this task. However, these methods will inevitably fall into the trade-off between preserving the subject-specific identity and generating healthy-like appearances. To overcome this challenge, we propose a novel adversarial training regime, Generator versus Segmentor (GVS), to alleviate this trade-off by a divide-and-conquer strategy. We further consider the deteriorating generalization performance of the segmentor throughout the training and develop a pixel-wise weighted loss by muting the well-transformed pixels to promote it. Moreover, we propose a new metric to measure how healthy the synthetic images look. The qualitative and quantitative experiments on the public dataset BraTS demonstrate that the proposed method outperforms the existing methods. Besides, we also certify the effectiveness of our method on datasets LiTS. Our implementation and pre-trained networks are publicly available at https://github.com/Au3C2/Generator-Versus-Segmentor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源