论文标题
基于多任务记忆神经网络的需求预测的知识调整
Knowledge Adaption for Demand Prediction based on Multi-task Memory Neural Network
论文作者
论文摘要
对公共服务操作的不同公共交通模式(例如,公共汽车和轻轨)的准确需求预测至关重要。在直觉上,不同的公共交通模式可以在城市中在时间和空间上在时间和空间上进行共同的需求模式。这样,我们建议通过站点密集型模式的数据和DesignAmory-agemogmory-agement-agement-agement-agement-agement-agemogmory-taskRecretrent网络(成熟)从每种模式的模式中得出可转移的模式的模式来增强站点 - sparse模式的需求预测。站密集型模式。具体而言,MatureComprises三个组成部分:1)一种存储器ageaigmentedRecurrent网络,用于增强捕获长期术语信息并存储每个Transit模式的时间知识的能力; 2)一个知识适应模块,以使相关知识从站密集型来源调整到站点供应机械; 3)一个多任务学习框架,旨在合并所有信息并预测多种模式的需求。对现实世界中数据集的实验结果涵盖了四种Pub-lic Table Modes,这表明我们的模型可以促进站点 - Sparse模式的预测性能。
Accurate demand forecasting of different public transport modes(e.g., buses and light rails) is essential for public service operation.However, the development level of various modes often varies sig-nificantly, which makes it hard to predict the demand of the modeswith insufficient knowledge and sparse station distribution (i.e.,station-sparse mode). Intuitively, different public transit modes mayexhibit shared demand patterns temporally and spatially in a city.As such, we propose to enhance the demand prediction of station-sparse modes with the data from station-intensive mode and designaMemory-Augmented Multi-taskRecurrent Network (MATURE)to derive the transferable demand patterns from each mode andboost the prediction of station-sparse modes through adaptingthe relevant patterns from the station-intensive mode. Specifically,MATUREcomprises three components: 1) a memory-augmentedrecurrent network for strengthening the ability to capture the long-short term information and storing temporal knowledge of eachtransit mode; 2) a knowledge adaption module to adapt the rele-vant knowledge from a station-intensive source to station-sparsesources; 3) a multi-task learning framework to incorporate all theinformation and forecast the demand of multiple modes jointly.The experimental results on a real-world dataset covering four pub-lic transport modes demonstrate that our model can promote thedemand forecasting performance for the station-sparse modes.