论文标题

Bohmian量子力学中的混乱:简短的评论

Chaos in Bohmian Quantum Mechanics: A short review

论文作者

Contopoulos, George, Tzemos, Athanasios C.

论文摘要

这是基于我们在该领域的一系列作品的Bohmian量子力学理论中的简短回顾。我们的第一个结果是开发了导致Bohmian系统中混乱产生的通用理论机制(在2和3维度中)。这种机制使我们能够探索混乱对波哈米亚轨迹的影响,并在分析和数字上进行详细研究(无论是在分析上还是数值上)的研究,通常是混乱和顺序共存的不同类型的Bohmian轨迹。最后,我们探讨了量子纠缠对波哈米亚轨迹进化的影响,并研究了具有极大的理论和实践兴趣的量子系统中的混乱和成真。我们发现混乱的轨迹也是千古的,即,无论其初始条件如何,它们在长时间后都会给出相同的最终分布。在强大的纠缠情况下,大多数轨迹都是混乱和颈动性的,并且在随着时间的过程中,颗粒的任意初始分布趋向于出生的统治。另一方面,在纠缠较弱的情况下,Born的规则的分布由有序的轨迹主导,因此,除非最初满足,否则粒子的任意初始配置通常不会趋向于Born的规则。我们的结果揭示了波哈米亚力学中的基本问题,即是否通过Bohmian颗粒的任意初始分布对Born的规则有动态近似。

This is a short review in the theory of chaos in Bohmian Quantum Mechanics based on our series of works in this field. Our first result is the development of a generic theoretical mechanism responsible for the generation of chaos in an arbitrary Bohmian system (in 2 and 3 dimensions). This mechanism allows us to explore the effect of chaos on Bohmian trajectories and study in detail (both analytically and numerically) the different kinds of Bohmian trajectories where, in general, chaos and order coexist. Finally we explore the effect of quantum entanglement on the evolution of the Bohmian trajectories and study chaos and ergodicity in qubit systems which are of great theoretical and practical interest. We find that the chaotic trajectories are also ergodic, i.e. they give the same final distribution of their points after a long time regardless of their initial conditions. In the case of strong entanglement most trajectories are chaotic and ergodic and an arbitrary initial distribution of particles will tends to Born's rule over the course of time. On the other hand, in the case of weak entanglement the distribution of Born's rule is dominated by ordered trajectories and consequently an arbitrary initial configuration of particles will not tend, in general, to Born's rule, unless it is initially satisfied. Our results shed light on a fundamental problem in Bohmian Mechanics, namely whether there is a dynamical approximation of Born's rule by an arbitrary initial distribution of Bohmian particles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源