论文标题

具有不确定性系统的数据驱动的分层控制结构

A Data-driven Hierarchical Control Structure for Systems with Uncertainty

论文作者

Shi, Lu, Teng, Hanzhe, Kan, Xinyue, Karydis, Konstantinos

论文摘要

本文引入了数据驱动的层次控制(DHC)结构,以提高在系统和/或环境不确定性效果下运行的系统的性能。所提出的分层方法由两个部分组成:1)数据驱动的模型识别组件,以了解对现有的低级控制器和不确定时间变化的工厂输出的参考信号之间的线性近似。 2)一个高级控制器组件,利用已确定的近似值并包裹现有控制器,以便系统在系统部署过程中处理建模错误和环境不确定性。 我们得出了松散而紧密的边界,以确定近似对嘈杂数据的敏感性。此外,我们表明,添加高级控制器可以保持原始系统的稳定性。拟议方法的一个好处是,它仅需要对国家和投入的少量观察,因此在线工作。该功能使我们的方法吸引了实时操作至关重要的机器人应用程序。在模拟中证明了DHC结构的功效,并使用具有大约已知质量和惯性参数的空中机器人对实验进行了验证,并且在地面效应的影响下运行。

The paper introduces a Data-driven Hierarchical Control (DHC) structure to improve performance of systems operating under the effect of system and/or environment uncertainty. The proposed hierarchical approach consists of two parts: 1) A data-driven model identification component to learn a linear approximation between reference signals given to an existing lower-level controller and uncertain time-varying plant outputs. 2) A higher-level controller component that utilizes the identified approximation and wraps around the existing controller for the system to handle modeling errors and environment uncertainties during system deployment. We derive loose and tight bounds for the identified approximation's sensitivity to noisy data. Further, we show that adding the higher-level controller maintains the original system's stability. A benefit of the proposed approach is that it requires only a small amount of observations on states and inputs, and it thus works online; that feature makes our approach appealing to robotics applications where real-time operation is critical. The efficacy of the DHC structure is demonstrated in simulation and is validated experimentally using aerial robots with approximately-known mass and moment of inertia parameters and that operate under the influence of ground effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源