论文标题
对色带图的部分双偶属多项式的插值猜想的反示例
Counterexamples to the interpolating conjecture on partial-dual genus polynomials of ribbon graphs
论文作者
论文摘要
Gross,Mansour和Tucker引入了部分双重定位属多项式和部分双重欧拉属多项式。他们表明,可定向色带图的部分偶属多项式插值是在插值,并给出了类似的猜想:对于任何不可方向的色带图,部分双重欧拉 - 基因斯多项式都在插值。在本文中,我们首先对猜想进行一些反例。然后是由这些反例激励的,我们进一步找到了两个无限类的反例。
Gross, Mansour and Tucker introduced the partial-dual orientable genus polynomial and the partial-dual Euler genus polynomial. They showed that the partial-dual genus polynomial for an orientable ribbon graph is interpolating and gave an analogous conjecture: The partial-dual Euler-genus polynomial for any non-orientable ribbon graph is interpolating. In this paper, we first give some counterexamples to the conjecture. Then motivated by these counterexamples, we further find two infinite classes of counterexamples.