论文标题
对称空间的量化的比较:循环组合knizhnik-zamolodchikov方程和letzter-kolb坐骨
Comparison of quantizations of symmetric spaces: cyclotomic Knizhnik-Zamolodchikov equations and Letzter-Kolb coideals
论文作者
论文摘要
我们在准官方框架内的两种方法之间建立了两种方法,以量化紧凑型类型的不可约合的对称空间,一种基于eneriquez-eting of Cyclotomic knizhnik-Zamolodchikov(kz)方程的Enriquez-Etinging,而另一个基于Letzter-kolb coideals。可以将这种等效性升级到带状编织的准练习,然后相关的反射算子(k-matrices)成为量化的切实不变。作为一种应用,我们获得了由KZ-方程和Balagović-Kolb通用k-Matrices定义的B型辫子组表示的Kohno-Drinfeld型定理。 Hermitian和非弱者对称空间的病例显着差异。特别是,在后一种情况下,准共享基本上是独一无二的,而在前者中,我们表明有一个参数互不相同的准官方。
We establish an equivalence between two approaches to quantization of irreducible symmetric spaces of compact type within the framework of quasi-coactions, one based on the Enriquez-Etingof cyclotomic Knizhnik-Zamolodchikov (KZ) equations and the other on the Letzter-Kolb coideals. This equivalence can be upgraded to that of ribbon braided quasi-coactions, and then the associated reflection operators (K-matrices) become a tangible invariant of the quantization. As an application we obtain a Kohno-Drinfeld type theorem on type B braid group representations defined by the monodromy of KZ-equations and by the Balagović-Kolb universal K-matrices. The cases of Hermitian and non-Hermitian symmetric spaces are significantly different. In particular, in the latter case a quasi-coaction is essentially unique, while in the former we show that there is a one-parameter family of mutually nonequivalent quasi-coactions.