论文标题

涉及单数电位的紧凑型歧管上的均匀索波列夫估计值

Uniform Sobolev Estimates on compact manifolds involving singular potentials

论文作者

Blair, Matthew D., Huang, Xiaoqi, Sire, Yannick, Sogge, Christopher D.

论文摘要

We obtain generalizations of the uniform Sobolev inequalities of Kenig, Ruiz and the fourth author \cite{KRS} for Euclidean spaces and Dos Santos Ferreira, Kenig and Salo \cite{DKS} for compact Riemannian manifolds involving critically singular potentials $V\in L^{n/2}$.我们还获得了第一个,第三和第四作者的类似改进的准杂志估计值\ cite {bss},hassell and tacy \ cite \ cite {hasselltacy},第一和第四作者\ cite \ cite {sblog},以及希克曼\ cite \ cite {hickman}以及估计{hickman}的估计,以及相对的unibore nud。 \ cite {bssy}和\ cite {hickman}涉及此类潜力。此外,在$ s^n $上,我们获得了涉及最佳指数范围的此类潜力的尖锐统一的sobolev不等式,这些范围扩展了黄链链菌的结果和第四作者\ cite \ cite {shso}。对于一般的riemannian歧管,我们通过在较大(且最佳)范围的指数范围中获得较大(和最佳的)指数范围的Quasimode估计值在较弱的假设中,即$ v \ in l^{n/2} $中的较弱的假设。

We obtain generalizations of the uniform Sobolev inequalities of Kenig, Ruiz and the fourth author \cite{KRS} for Euclidean spaces and Dos Santos Ferreira, Kenig and Salo \cite{DKS} for compact Riemannian manifolds involving critically singular potentials $V\in L^{n/2}$. We also obtain the analogous improved quasimode estimates of the the first, third and fourth authors \cite{BSS} , Hassell and Tacy \cite{HassellTacy}, the first and fourth author \cite{SBLog}, and Hickman \cite{Hickman} as well as analogues of the improved uniform Sobolev estimates of \cite{BSSY} and \cite{Hickman} involving such potentials. Additionally, on $S^n$, we obtain sharp uniform Sobolev inequalities involving such potentials for the optimal range of exponents, which extend the results of S. Huang and the fourth author \cite{SHSo}. For general Riemannian manifolds we improve the earlier results in \cite{BSS} by obtaining quasimode estimates for a larger (and optimal) range of exponents under the weaker assumption that $V\in L^{n/2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源