论文标题

可压缩分层磁剪切流的特征值边界在两个横向方向变化

Eigenvalue bounds for compressible stratified magneto-shear flows varying in two transverse directions

论文作者

Deguchi, Kengo

论文摘要

对于理想可压缩的分层磁动力学剪切流的不稳定性,得出了三个特征值边界,在两个方向上,基本速度,密度和磁场在两个方向上有所不同。可以通过将霍华德半圆定理与拉格朗日位移的能量原理相结合来获得第一个结合。值得注意的是,不需要特殊条件即可使用这种界限,在某些情况下,我们可以建立流量的稳定性。第二和第三界来自迈尔斯 - 霍德理论的概括,与Kochar&Jain的半椭圆定理具有一定的相似性(J. Fluid Mech。,第91卷,1979年,第489页),由Cally。Callophys。Fluid。FluidDyn。,第31卷,1983年,第43卷,第43页,第43页)。这项研究的一个重要副产品是,只有在没有施加磁场的情况下,英里 - 霍德稳定性条件才能保持,此外,剪切和分层的方向在各处对齐。

Three eigenvalue bounds are derived for the instability of ideal compressible stratified magnetohydrodynamic shear flows in which the base velocity, density, and magnetic field vary in two directions. The first bound can be obtained by combining the Howard semi-circle theorem with the energy principle of the Lagrangian displacement. Remarkably, no special conditions are needed to use this bound, and for some cases, we can establish the stability of the flow. The second and third bounds come out from a generalisation of the Miles-Howard theory and have some similarity to the semi-ellipse theorem by Kochar & Jain (J. Fluid Mech., vol. 91, 1979, 489) and the bound found by Cally (Astrophys. Fluid Dyn., vol. 31,1983, 43), respectively. An important byproduct of this investigation is that the Miles-Howard stability condition holds only when there is no applied magnetic field and, in addition, the directions of the shear and the stratification are aligned everywhere.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源