论文标题
高分辨率MRI重建的有效多级胎儿脑分割带有嘈杂标签
Efficient multi-class fetal brain segmentation in high resolution MRI reconstructions with noisy labels
论文作者
论文摘要
发育中的胎儿大脑的分割是定量分析的重要一步。但是,手动分割是一项非常耗时的任务,容易出错,必须由高度专业化的印度语完成。胎儿MRI的超分辨率重建已成为处理此类数据的标准,因为它可以改善图像质量和分辨率。但是,不同的管道导致略有不同的输出,进一步使旨在分割超分辨率数据的分割方法的结构复杂化。因此,我们建议使用嘈杂的多级标签使用转移学习,以使用一种使用一种重建方法创建的一组SEG摄取自动分割高分辨率的胎儿脑MRIS,并在其他重建方法中测试了可推广性。我们的结果表明,该网络可以自动示范胎儿脑重建为7种不同的组织类型,这是无用的重建方法。与没有预先定位的培训相比,转移学习提供了一些优势,但是在干净标签上训练的网络总体上更准确。无需其他手动细分。因此,所提出的网络有可能消除对胎儿大脑的定量分析所需的手动分割的需求,而与所使用的重建方法无关,这提供了一种无偏见的方法来量化正常和病理神经发育。
Segmentation of the developing fetal brain is an important step in quantitative analyses. However, manual segmentation is a very time-consuming task which is prone to error and must be completed by highly specialized indi-viduals. Super-resolution reconstruction of fetal MRI has become standard for processing such data as it improves image quality and resolution. However, dif-ferent pipelines result in slightly different outputs, further complicating the gen-eralization of segmentation methods aiming to segment super-resolution data. Therefore, we propose using transfer learning with noisy multi-class labels to automatically segment high resolution fetal brain MRIs using a single set of seg-mentations created with one reconstruction method and tested for generalizability across other reconstruction methods. Our results show that the network can auto-matically segment fetal brain reconstructions into 7 different tissue types, regard-less of reconstruction method used. Transfer learning offers some advantages when compared to training without pre-initialized weights, but the network trained on clean labels had more accurate segmentations overall. No additional manual segmentations were required. Therefore, the proposed network has the potential to eliminate the need for manual segmentations needed in quantitative analyses of the fetal brain independent of reconstruction method used, offering an unbiased way to quantify normal and pathological neurodevelopment.