论文标题
相对论的流体动力学,依赖动量的放松时间
Relativistic hydrodynamics with momentum dependent relaxation time
论文作者
论文摘要
使用相对论传输方程中动量依赖的松弛时间得出了二阶相对论流体动力学理论。为此,采用了梯度扩展方法的迭代技术,即Chapman-Enskog(CE)颗粒分布函数的扩展。这项工作的关键发现是,(i)相互碰撞期间动量依赖的放松时间导致热力学变量的延长兰道匹配条件,(ii)鲍尔茨曼方程的数值解决方案的结果是两个流行的极限限制之间的位置:线性和Quadratic Ansatz之间的平等范围,表明了平等的动力依据,即在稳定的范围内,均与稳定性相关联,适用于稳定的依据,以适应稳定性的相关性。迭代梯度扩展方法(例如CE)和众所周知的力矩方法,例如Grad的14摩托方法。
A second order relativistic hydrodynamic theory has been derived using momentum dependent relaxation time in the relativistic transport equation. In order to do that, an iterative technique of gradient expansion approach, namely Chapman-Enskog (CE) expansion of the particle distribution function has been employed. The key findings of this work are, (i) momentum dependent relaxation time in collision term results in an extended Landau matching condition for the thermodynamic variables, (ii) the result from numerical solution of Boltzmann equation lies somewhere in between the two popular extreme limits : linear and quadratic ansatz, indicating a fractional power of momentum dependence in relaxation time to be appropriate, (ii) an equivalence has been established between the iterative gradient expansion method like CE and the well known moment approach like Grad's 14-moment method.