论文标题
动力学:解耦重建误差和删除表示表示学习
DynamicVAE: Decoupling Reconstruction Error and Disentangled Representation Learning
论文作者
论文摘要
本文挑战了一个普遍的假设,即$β$ -VAE中的权重$β$应大于$ 1 $,以有效地解散潜在因素。我们证明,具有$β<1 $的$β$ -VAE不仅可以达到良好的分解,而且可以通过动态控制显着提高重建精度。该论文消除了$β$ -VAE的重建准确性与解散性的固有权衡。现有方法(例如$β$ -VAE和FACRANVAE)在目标函数中为KL-Divergence项分配了很大的重量,从而导致高重建错误是为了更好的分解。为了减轻此问题,最近已经开发了一个控制vae,该控制节动态调整了KL-Divergence重量,以试图控制权衡取舍,以更有利。但是,ControlVae无法消除对大$β$(用于解散)的需求与对小$β$的需求之间的冲突。取而代之的是,我们提出了在训练的不同阶段保持不同的$β$的动力学,从而取消了分解和重建精度。为了扩大重量,$β$,沿着能够脱钩的轨迹,动态视频利用了修改的增量PI(比例综合)控制器,并采用移动平均值以及一种混合退火方法来使KL差异的价值在紧密控制的时尚中平稳地进化。从理论上讲,我们证明了所提出的方法的稳定性。三个基准数据集的评估结果表明,动态vae显着提高了重建精度,同时实现了与现有方法最佳方法相当的分离。结果验证了我们的方法可以将分离的表示和重建分开,从而消除了两者之间的固有张力。
This paper challenges the common assumption that the weight $β$, in $β$-VAE, should be larger than $1$ in order to effectively disentangle latent factors. We demonstrate that $β$-VAE, with $β< 1$, can not only attain good disentanglement but also significantly improve reconstruction accuracy via dynamic control. The paper removes the inherent trade-off between reconstruction accuracy and disentanglement for $β$-VAE. Existing methods, such as $β$-VAE and FactorVAE, assign a large weight to the KL-divergence term in the objective function, leading to high reconstruction errors for the sake of better disentanglement. To mitigate this problem, a ControlVAE has recently been developed that dynamically tunes the KL-divergence weight in an attempt to control the trade-off to more a favorable point. However, ControlVAE fails to eliminate the conflict between the need for a large $β$ (for disentanglement) and the need for a small $β$. Instead, we propose DynamicVAE that maintains a different $β$ at different stages of training, thereby decoupling disentanglement and reconstruction accuracy. In order to evolve the weight, $β$, along a trajectory that enables such decoupling, DynamicVAE leverages a modified incremental PI (proportional-integral) controller, and employs a moving average as well as a hybrid annealing method to evolve the value of KL-divergence smoothly in a tightly controlled fashion. We theoretically prove the stability of the proposed approach. Evaluation results on three benchmark datasets demonstrate that DynamicVAE significantly improves the reconstruction accuracy while achieving disentanglement comparable to the best of existing methods. The results verify that our method can separate disentangled representation learning and reconstruction, removing the inherent tension between the two.