论文标题
曲线对称力量的动机不变
Motivic invariants of symmetric powers of curves
论文作者
论文摘要
我们研究了平滑射击曲线的对称力的各种不变的结构,从曲线的Jacobian的结构。我们将麦克唐纳和柯利诺的结果推广到各种不变的人,包括Weil-colohology理论,较高的Chow群体,添加剂较高的Chow群和合理的$ K $ - 群体。
We study the structure of various invariants of the symmetric powers of a smooth projective curve in terms of that of the Jacobian of the curve. We generalise the results of Macdonald and Collino to various invariants including the Weil-cohomology theory, the higher Chow groups, the additive higher Chow groups and the rational $K$-groups.