论文标题

表面,辫子,斯托克斯矩阵和点上的点

Surfaces, braids, Stokes matrices, and points on spheres

论文作者

Fan, Yu-Wei, Whang, Junho Peter

论文摘要

$ n $ spheres上的点数的模量空间具有编织组的自然动作。对于$ n = 0 $,$ 1 $和$ 3 $,我们证明这些对称性扩展到映射属于正属的阶级组的动作,通过建立具有某些本地系统模型的特殊同构。这取决于在这些维度中的球体的存在。我们还使用该连接来证明,等级4的空间Stokes矩阵具有固定的Coxeter的非零判别剂不变,仅包含有限的许多积分编织组轨道。

Moduli spaces of points on $n$-spheres carry natural actions of braid groups. For $n=0$, $1$, and $3$, we prove that these symmetries extend to actions of mapping class groups of positive genus surfaces, by establishing exceptional isomorphisms with certain moduli of local systems. This relies on the existence of group structure for spheres in these dimensions. We also use the connection to demonstrate that the space of rank 4 Stokes matrices with fixed Coxeter invariant of nonzero discriminant contains only finitely many integral braid group orbits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源