论文标题

Hermitian K理论的稳定$ \ infty $ - 类别II:COBORDISM类别和添加性

Hermitian K-theory for stable $\infty$-categories II: Cobordism categories and additivity

论文作者

Calmès, Baptiste, Dotto, Emanuele, Harpaz, Yonatan, Hebestreit, Fabian, Land, Markus, Moi, Kristian, Nardin, Denis, Nikolaus, Thomas, Steimle, Wolfgang

论文摘要

我们在Poincaré$ \ infty $ - 类别的环境中定义了Grothendieck-Witt Spectra,并表明它们适合具有K-和L Wheoretic部分的扩展。作为后果,我们推断了Verdier商的本地化序列,以及Karoubi的基本和周期性定理的概括,其中2不需要可逆。我们的设置允许对这种代数示例进行统一处理以及同质理论概括:例如,周期性定理适用于复杂的$ \ Mathrm {e} _1 $ - 环,我们表明,Grethendieck-witt的参数性光谱理论恢复了Weiss and Williams和Williams'La la la theory la theory la theore'theory。 我们的Grothendieck-Witt Spectra是通过Hermitian Q-sonstruction的版本来定义的,我们方法的新颖特征是将后者解释为COBORDISM类别。这种观点还使我们能够给出Blumberg,Gepner和Tabuada定理的Hermitian版本以及简洁的证据,并提供了上述LA-Spectra的Coobordism理论描述。

We define Grothendieck-Witt spectra in the setting of Poincaré $\infty$-categories and show that they fit into an extension with a K- and an L-theoretic part. As consequences we deduce localisation sequences for Verdier quotients, and generalisations of Karoubi's fundamental and periodicity theorems for rings in which 2 need not be invertible. Our set-up allows for the uniform treatment of such algebraic examples alongside homotopy-theoretic generalisations: For example, the periodicity theorem holds for complex oriented $\mathrm{E}_1$-rings, and we show that the Grothendieck-Witt theory of parametrised spectra recovers Weiss and Williams' LA-theory. Our Grothendieck-Witt spectra are defined via a version of the hermitian Q-construction, and a novel feature of our approach is to interpret the latter as a cobordism category. This perspective also allows us to give a hermitian version -- along with a concise proof -- of the theorem of Blumberg, Gepner and Tabuada, and provides a cobordism theoretic description of the aforementioned LA-spectra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源