论文标题

通过视觉分析来审核基于图的排名的灵敏度

Auditing the Sensitivity of Graph-based Ranking with Visual Analytics

论文作者

Xie, Tiankai, Ma, Yuxin, Tong, Hanghang, Thai, My T., Maciejewski, Ross

论文摘要

图挖掘在许多学科中都起着关键作用,并且已经开发了多种算法来回答谁/什么类型的问题。例如,我们应该向电子商务平台上的给定用户推荐哪些项目?这些问题的答案通常以排名列表的形式返回,基于图的排名方法被广泛用于工业信息检索设置。但是,这些排名算法具有多种敏感性,甚至排名的较小变化也会导致产品销售和页面命中率大大减少。因此,需要工具和方法,可以帮助建模开发人员和分析师探索图排名算法相对于图形结构中的扰动的敏感性。在本文中,我们提出了一个视觉分析框架,用于通过执行基于扰动的what-if分析来解释和探索任何基于图的排名算法的灵敏度。我们通过三个案例研究来证明我们的框架,以检查两种基于图形的经典排名算法(Pagerank和Hits)的敏感性,这些框架适用于政治新闻媒体和社交网络中的排名。

Graph mining plays a pivotal role across a number of disciplines, and a variety of algorithms have been developed to answer who/what type questions. For example, what items shall we recommend to a given user on an e-commerce platform? The answers to such questions are typically returned in the form of a ranked list, and graph-based ranking methods are widely used in industrial information retrieval settings. However, these ranking algorithms have a variety of sensitivities, and even small changes in rank can lead to vast reductions in product sales and page hits. As such, there is a need for tools and methods that can help model developers and analysts explore the sensitivities of graph ranking algorithms with respect to perturbations within the graph structure. In this paper, we present a visual analytics framework for explaining and exploring the sensitivity of any graph-based ranking algorithm by performing perturbation-based what-if analysis. We demonstrate our framework through three case studies inspecting the sensitivity of two classic graph-based ranking algorithms (PageRank and HITS) as applied to rankings in political news media and social networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源