论文标题

工作记忆期间大脑区域的灵活性减少了缺乏睡眠的认知后果

Flexibility of brain regions during working memory curtails cognitive consequences to lack of sleep

论文作者

Lauharatanahirun, Nina, Bansal, Kanika, Thurman, Steven M., Vettel, Jean M., Giesbrecht, Barry, Grafton, Scott, Elliott, James C., Flynn-Evans, Erin, Falk, Emily, Garcia, Javier O.

论文摘要

先前的研究表明,睡眠与记忆之间存在明显的关系,研究了睡眠剥夺对非常短的持续时间或特殊人群中关键认知过程的影响。在这里,我们在一项纵向16周的研究中表明,健康成年人的自然主义,不受限制的睡眠调制对大脑产生了重大影响。使用动态网络方法与分层统计建模相结合,我们表明,当参与者执行低睡眠发作后,参与者执行工作记忆任务时,跨越大型网络的特定大脑区域的灵活性会增加。至关重要的是,绩效本身并没有随着睡眠的函数而变化,这意味着大脑网络中的适应性是通过招募必要的资源来完成任务来弥补睡眠不佳的情况。我们进一步探讨了这种补偿效应是否是由于(i)随着时间的推移和/或(ii)扩展网络本身的募集而驱动的。我们的结果增加了连接睡眠和记忆的文献,提供了一个分析框架,以研究大脑中的补偿性调制,并强调大脑对外部压力对性能的日常波动的韧性。

Previous research has shown a clear relationship between sleep and memory, examining the impact of sleep deprivation on key cognitive processes over very short durations or in special populations. Here, we show, in a longitudinal 16 week study, that naturalistic, unfettered sleep modulations in healthy adults have significant impacts on the brain. Using a dynamic networks approach combined with hierarchical statistical modelling, we show that the flexibility of particular brain regions that span a large network including regions in occipital, temporal, and frontal cortex increased when participants performed a working memory task following low sleep episodes. Critically, performance itself did not change as a function of sleep, implying adaptability in brain networks to compensate for having a poor night's sleep by recruiting the necessary resources to complete the task. We further explore whether this compensatory effect is driven by a (i) increase in the recruitment of network resources over time and/or (ii) an expansion of the network itself. Our results add to the literature linking sleep and memory, provide an analytical framework in which to investigate compensatory modulations in the brain, and highlight the brain's resilience to day-to-day fluctuations of external pressures to performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源