论文标题

广义增量背包问题的近似算法

Approximation Algorithms for The Generalized Incremental Knapsack Problem

论文作者

Faenza, Yuri, Segev, Danny, Zhang, Lingyi

论文摘要

我们介绍并研究了经典背包问题的离散多周期扩展,称为广义增量背包。在此设置中,我们将获得一组$ n $项目,每个项目与非负重量相关联,以及$ t $的时间段,具有非折叠能力$ w_1 \ leq \ leq \ dots \ leq w_t $。当项目$ i $在时间$ t $上插入时,我们将获得$ p_ {it} $的利润;但是,此项目在随后的所有时期内都保留在背包中。目的是决定是否以及何时插入每个项目,但要受到时间依赖的容量限制,目的是最大化我们的总利润。有趣的是,这种设置属于特殊情况,这是许多最近研究的增量背包问题,所有这些问题都是NP坚强的。 我们的第一个贡献是以多项式时间$(\ frac {1} {2}-ε)$的形式出现的 - 对于广义增量背包问题而言。该结果基于将动态编程技术和经典分配问题的经典Shmoys-Tardos算法融合来解决的重新印度作为单机测序问题。结合进一步的基于枚举的自我增强思想和几乎最佳解决方案的新揭示结构特性,我们将基本算法变成了准多项式时间近似方案(QPTAS)。因此,在普遍认为的复杂性假设下,这一发现排除了普遍的增量背包是APX-HARD的可能性。

We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack. In this setting, we are given a set of $n$ items, each associated with a non-negative weight, and $T$ time periods with non-decreasing capacities $W_1 \leq \dots \leq W_T$. When item $i$ is inserted at time $t$, we gain a profit of $p_{it}$; however, this item remains in the knapsack for all subsequent periods. The goal is to decide if and when to insert each item, subject to the time-dependent capacity constraints, with the objective of maximizing our total profit. Interestingly, this setting subsumes as special cases a number of recently-studied incremental knapsack problems, all known to be strongly NP-hard. Our first contribution comes in the form of a polynomial-time $(\frac{1}{2}-ε)$-approximation for the generalized incremental knapsack problem. This result is based on a reformulation as a single-machine sequencing problem, which is addressed by blending dynamic programming techniques and the classical Shmoys-Tardos algorithm for the generalized assignment problem. Combined with further enumeration-based self-reinforcing ideas and newly-revealed structural properties of nearly-optimal solutions, we turn our basic algorithm into a quasi-polynomial time approximation scheme (QPTAS). Hence, under widely believed complexity assumptions, this finding rules out the possibility that generalized incremental knapsack is APX-hard.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源