论文标题
使用时空转向在量子设备上基准测试量子状态转移
Benchmarking Quantum State Transfer on Quantum Devices using Spatio-Temporal Steering
论文作者
论文摘要
量子状态转移(QST)提供了一种将任意量子状态从一个系统发送到另一个系统的方法。这样的概念对于将量子信息传输到量子存储器,量子处理器和量子网络至关重要。 QST的标准基准是准备状态和接收的州之间的平均保真度。在这项工作中,我们提供了一个新的基准测试,该基准揭示了基于时空转向(STS)的QST的非古典性。更具体地说,我们表明,STS中的本地隐藏状态(LHS)模型可以看作是国家转移的经典策略。因此,我们可以通过测量时空的可置性来量化QST过程的非经典性。然后,我们将时空的可置态度测量技术应用于基准量子设备,包括IBM量子体验和QST任务下的Qutech量子启发。实验结果表明,随着电路深度的增加,时空的可置换性降低,并且还原与噪声模型一致,这是指在QST过程中误差的积累。此外,我们提供了一个数量来估计由设备的门误或固有的非马克维亚效应引起的信号传导效应。
Quantum state transfer (QST) provides a method to send arbitrary quantum states from one system to another. Such a concept is crucial for transmitting quantum information into the quantum memory, quantum processor, and quantum network. The standard benchmark of QST is the average fidelity between the prepared and received states. In this work, we provide a new benchmark which reveals the non-classicality of QST based on spatio-temporal steering (STS). More specifically, we show that the local-hidden-state (LHS) model in STS can be viewed as the classical strategy of state transfer. Therefore, we can quantify the non-classicality of QST process by measuring the spatio-temporal steerability. We then apply the spatio-temporal steerability measurement technique to benchmark quantum devices including the IBM quantum experience and QuTech quantum inspire under QST tasks. The experimental results show that the spatio-temporal steerability decreases as the circuit depth increases, and the reduction agrees with the noise model, which refers to the accumulation of errors during the QST process. Moreover, we provide a quantity to estimate the signaling effect which could result from gate errors or intrinsic non-Markovian effect of the devices.