论文标题

对推荐分类算法的自动化机器学习方法的广泛实验评估(扩展版)

An Extensive Experimental Evaluation of Automated Machine Learning Methods for Recommending Classification Algorithms (Extended Version)

论文作者

Basgalupp, Márcio P., Barros, Rodrigo C., de Sá, Alex G. C., Pappa, Gisele L., Mantovani, Rafael G., de Carvalho, André C. P. L. F., Freitas, Alex A.

论文摘要

本文介绍了四种自动化机器学习(AUTOML)方法之间的实验比较,用于推荐给定输入数据集的最佳分类算法。其中三种方法基于进化算法(EAS),另一种是Auto-Weka,这是一种基于合并算法选择和超参数优化(现金)方法的众所周知的汽车方法。基于EA的方法从单个机器学习范式中构建分类算法:决策树诱导,规则诱导或贝叶斯网络分类。 Auto-Weka结合了算法选择和超参数优化,以推荐来自多个范式的分类算法。我们进行了受控实验,在该实验中,这四个AutoML方法对此限制的不同值给予了相同的运行时限制。通常,三种最佳汽车方法的预测准确性差异在统计学上没有显着意义。但是,EA不断发展的决策-Tree感应算法具有生成可解释的分类模型的算法,并且通过与Auto-Wweka推荐的其他学习范式的许多算法相比,这些算法对大型数据集更可扩展。我们还观察到,自动Weka显示了元估计的元拟合,这是一种在元学习水平上过度拟合的形式,而不是在基础学习水平上。

This paper presents an experimental comparison among four Automated Machine Learning (AutoML) methods for recommending the best classification algorithm for a given input dataset. Three of these methods are based on Evolutionary Algorithms (EAs), and the other is Auto-WEKA, a well-known AutoML method based on the Combined Algorithm Selection and Hyper-parameter optimisation (CASH) approach. The EA-based methods build classification algorithms from a single machine learning paradigm: either decision-tree induction, rule induction, or Bayesian network classification. Auto-WEKA combines algorithm selection and hyper-parameter optimisation to recommend classification algorithms from multiple paradigms. We performed controlled experiments where these four AutoML methods were given the same runtime limit for different values of this limit. In general, the difference in predictive accuracy of the three best AutoML methods was not statistically significant. However, the EA evolving decision-tree induction algorithms has the advantage of producing algorithms that generate interpretable classification models and that are more scalable to large datasets, by comparison with many algorithms from other learning paradigms that can be recommended by Auto-WEKA. We also observed that Auto-WEKA has shown meta-overfitting, a form of overfitting at the meta-learning level, rather than at the base-learning level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源