论文标题

无人机通信的位置感知的预测波束:一种深度学习方法

Location-aware Predictive Beamforming for UAV Communications: A Deep Learning Approach

论文作者

Liu, Chang, Yuan, Weijie, Wei, Zhiqiang, Liu, Xuemeng, Ng, Derrick Wing Kwan

论文摘要

由于无人机的移动性和可操作性高,可以适应不同应用程序的异质要求,因此无人驾驶飞机(UAV)辅助通信成为实现第五代(5G)无线网络的有前途的技术。但是,无人机的运动对无人机和地面用户设备(UE)之间的准确光束对齐施加了挑战。在这封信中,我们提出了一个基于深度学习的深度感知的预测光束方案,以在动态场景中跟踪无人机通信的光束。具体而言,基于长期的短期内存(LSTM)的复发神经网络(LRNET)是为无人机位置预测设计的。基于预测的位置,可以在下一个时插槽中确定无人机和UE之间的预测角度,以实现有效和快速光束对齐,这可以在无人机和UE之间进行可靠的通信。仿真结果表明,所提出的方案可以达到令人满意的无人机通信速率,这接近了完美的精灵辅导方案获得的通信率的上限。

Unmanned aerial vehicle (UAV)-assisted communication becomes a promising technique to realize the beyond fifth generation (5G) wireless networks, due to the high mobility and maneuverability of UAVs which can adapt to heterogeneous requirements of different applications. However, the movement of UAVs impose challenge for accurate beam alignment between the UAV and the ground user equipment (UE). In this letter, we propose a deep learning-based location-aware predictive beamforming scheme to track the beam for UAV communications in a dynamic scenario. Specifically, a long short-term memory (LSTM)-based recurrent neural network (LRNet) is designed for UAV location prediction. Based on the predicted location, a predicted angle between the UAV and the UE can be determined for effective and fast beam alignment in the next time slot, which enables reliable communications between the UAV and the UE. Simulation results demonstrate that the proposed scheme can achieve a satisfactory UAV-to-UE communication rate, which is close to the upper bound of communication rate obtained by the perfect genie-aided alignment scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源