论文标题

DRL-FAS:一个基于深入增强式学习的新型框架

DRL-FAS: A Novel Framework Based on Deep Reinforcement Learning for Face Anti-Spoofing

论文作者

Cai, Rizhao, Li, Haoliang, Wang, Shiqi, Chen, Changsheng, Kot, Alex Chichung

论文摘要

受到人类采用的哲学的启发,以确定提出的面部示例是否是真实的,即先浏览全球范围的示例,然后仔细观察当地区域以获取更多的歧视性信息,对于面对反寻求的问题,我们提出了一个基于卷积神经网络(CNN)和Recurrent Newerrent Newerrent Newerrent newerrent Newerrent(Rnn)的新颖框架。特别是,我们通过利用深度强化学习来对探索与图像子捕捉的面部相关信息的行为进行建模。我们进一步介绍了一种经常性的机制,可以从使用RNN的探索子捕集中依次了解局部信息的表示。最后,出于分类目的,我们将本地信息与全局信息融合在一起,可以通过CNN从原始输入图像中学到。此外,我们进行了广泛的实验,包括消融研究和可视化分析,以评估我们在各种公共数据库上提出的框架。实验结果表明,我们的方法通常可以在所有情况下实现最先进的性能,从而证明其有效性。

Inspired by the philosophy employed by human beings to determine whether a presented face example is genuine or not, i.e., to glance at the example globally first and then carefully observe the local regions to gain more discriminative information, for the face anti-spoofing problem, we propose a novel framework based on the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN). In particular, we model the behavior of exploring face-spoofing-related information from image sub-patches by leveraging deep reinforcement learning. We further introduce a recurrent mechanism to learn representations of local information sequentially from the explored sub-patches with an RNN. Finally, for the classification purpose, we fuse the local information with the global one, which can be learned from the original input image through a CNN. Moreover, we conduct extensive experiments, including ablation study and visualization analysis, to evaluate our proposed framework on various public databases. The experiment results show that our method can generally achieve state-of-the-art performance among all scenarios, demonstrating its effectiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源