论文标题

线性非平等的平衡自由能差

Equilibrium free energy differences from a linear nonequilibrium equality

论文作者

Li, Geng, Tu, Z. C.

论文摘要

从非平衡测量中提取平衡信息是了解物理,化学和生物系统的热力学特性非常重要的挑战任务。 jarzynski平等的发现照明了估计在非平衡驾驶过程中所做的工作的平衡自由能差的方法。但是,非线性(指数)关系导致jarzynski平等的不良收敛性。在这里,我们提出了一种简洁的方法,可以通过线性非平等相等的线性差异来估计自由能差,该线性固有相等性比非线性非平衡相等性更快。这种线性非平等相等性依赖于加速的等温过程,该过程是通过使用统一的变分方法(称为等温度的变异快捷方式)实现的。我们将方法应用于在双孔电势中运动不足的布朗颗粒。模拟证实该方法可用于以高效率准确估计自由能差。尤其是在较高耗散的快速驾驶过程中,与基于非线性非平等相比的估算器相比,该方法可以提高准确性的数量级超过一个数量级。

Extracting equilibrium information from nonequilibrium measurements is a challenge task of great importance in understanding the thermodynamic properties of physical, chemical, and biological systems. The discovery of the Jarzynski equality illumines the way to estimate the equilibrium free energy difference from the work performed in nonequilibrium driving processes. However, the nonlinear (exponential) relation causes the poor convergence of the Jarzynski equality. Here, we propose a concise method to estimate the free energy difference through a linear nonequilibrium equality which inherently converges faster than nonlinear nonequilibrium equalities. This linear nonequilibrium equality relies on an accelerated isothermal process which is realized by using a unified variational approach, named variational shortcuts to isothermality. We apply our method to an underdamped Brownian particle moving in a double-well potential. The simulations confirm that the method can be used to accurately estimate the free energy difference with high efficiency. Especially during fast driving processes with high dissipation, the method can improve the accuracy by more than an order of magnitude compared with the estimator based on the nonlinear nonequilibrium equality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源