论文标题

在开放研究知识图中代表语义化的生物学测定

Representing Semantified Biological Assays in the Open Research Knowledge Graph

论文作者

Anteghini, Marco, D'Souza, Jennifer, Santos, Vitor A. P. Martins dos, Auer, Sören

论文摘要

在生物技术和生物医学领域中,最近的文本挖掘工作倡导机器解释,最好是语义化的实验室过程的文档格式。这包括湿实验方案,(IN)有机材料合成反应,遗传操作和程序,以更快的计算机介导的分析和预测。本文中,我们介绍了关于开放研究知识图(ORKG)中语义生物测定法的代表的工作。特别是,根据公平原则,我们描述了一个进行实用的语言化系统,以自动而快速地生成,这是促进一致的用户受众所需的关键语义的生物测定数据量量,以采用ORKG来记录其生物测定并促进研究的组织。

In the biotechnology and biomedical domains, recent text mining efforts advocate for machine-interpretable, and preferably, semantified, documentation formats of laboratory processes. This includes wet-lab protocols, (in)organic materials synthesis reactions, genetic manipulations and procedures for faster computer-mediated analysis and predictions. Herein, we present our work on the representation of semantified bioassays in the Open Research Knowledge Graph (ORKG). In particular, we describe a semantification system work-in-progress to generate, automatically and quickly, the critical semantified bioassay data mass needed to foster a consistent user audience to adopt the ORKG for recording their bioassays and facilitate the organisation of research, according to FAIR principles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源