论文标题

力矩无限的加权移位:序列条件

Moment Infinite Divisibility of Weighted Shifts: Sequence Conditions

论文作者

Benhida, Chafiq, Curto, Raul E., Exner, George R.

论文摘要

我们考虑具有无限分配的加权转移操作员;也就是说,对于任何$ p> 0 $,当每个重量(等效地,每时每刻)都会提高到$ p $ th的功率时,轮班都是次正常的。通过重新考虑转移的重量或矩情况的序列条件,我们获得了这种转移的新特征,我们证明在轻微的条件下,这种转移在多种操作下是强大的,并且在某些意义上也是刚性的。特别是,当且仅当其Aluthge变换为时,其权重序列具有极限的加权移位是无限分裂的。我们还考虑后步扩展名,乘坐和完成。

We consider weighted shift operators having the property of moment infinite divisibility; that is, for any $p > 0$, the shift is subnormal when every weight (equivalently, every moment) is raised to the $p$-th power. By reconsidering sequence conditions for the weights or moments of the shift, we obtain a new characterization for such shifts, and we prove that such shifts are, under mild conditions, robust under a variety of operations and also rigid in certain senses. In particular, a weighted shift whose weight sequence has a limit is moment infinitely divisible if and only if its Aluthge transform is. We also consider back-step extensions, subshifts, and completions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源