论文标题

使用机器学习和替代数据来预测市场风险的运动

Using Machine Learning and Alternative Data to Predict Movements in Market Risk

论文作者

Dierckx, Thomas, Davis, Jesse, Schoutens, Wim

论文摘要

近年来,使用机器学习和替代数据来预测金融市场。许多财务变量,例如股票价格,历史波动率和贸易量已经进行了广泛的调查。值得注意的是,我们没有发现在这种情况下对资产市场暗示波动的预测的现有研究。这种前瞻性的措施衡量了对资产的未来波动性的情绪,并被视为衍生品世界中最重要的参数之一。因此,预测该统计数据的能力可能为市场开展和资产管理的从业者提供竞争优势。因此,在本文中,我们调查了Google新闻统计数据和Wikipedia网站流量,作为定量市场数据并考虑逻辑回归,支持向量机和Adaboost作为机器学习模型的替代数据源。我们表明,确实可以通过机器学习技术来预测市场上隐含的波动性的运动。尽管采用的替代数据似乎并没有提高预测精度,但我们揭示了从Wikipedia页面流量获得的特征与市场隐含波动中的运动之间的非线性关系的初步证据。

Using machine learning and alternative data for the prediction of financial markets has been a popular topic in recent years. Many financial variables such as stock price, historical volatility and trade volume have already been through extensive investigation. Remarkably, we found no existing research on the prediction of an asset's market implied volatility within this context. This forward-looking measure gauges the sentiment on the future volatility of an asset, and is deemed one of the most important parameters in the world of derivatives. The ability to predict this statistic may therefore provide a competitive edge to practitioners of market making and asset management alike. Consequently, in this paper we investigate Google News statistics and Wikipedia site traffic as alternative data sources to quantitative market data and consider Logistic Regression, Support Vector Machines and AdaBoost as machine learning models. We show that movements in market implied volatility can indeed be predicted through the help of machine learning techniques. Although the employed alternative data appears to not enhance predictive accuracy, we reveal preliminary evidence of non-linear relationships between features obtained from Wikipedia page traffic and movements in market implied volatility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源