论文标题
在硅光子芯片中受到错误保护的量子
Error protected qubits in a silicon photonic chip
论文作者
论文摘要
通用量子计算机原则上可以纠缠许多嘈杂的物理量子,以实现保护不误差的复合量子。基于测量的量子计算的体系结构本质上支持受错误保护的量子位,并且是构建全光量子计算机的最可行的方法。在这里,我们提出并演示了一个纠缠多个光子的综合硅光子结构,并在单个光子上编码多个物理量子,以产生受错误保护的量子。我们意识到可重构图状态以比较有或没有错误校正编码的几个方案,并实施一系列量子信息处理任务。我们观察到,在没有错误保护的情况下,运行相位估计算法时,成功率从62.5%增加到95.8%。最后,我们意识到HyperGraph States,这是一类普遍的资源状态,可保护相关错误。我们的结果表明,如何使用资源有效的光子体系结构来实现量子误差校正编码,以提高量子算法的性能。
General purpose quantum computers can, in principle, entangle a number of noisy physical qubits to realise composite qubits protected against errors. Architectures for measurement-based quantum computing intrinsically support error-protected qubits and are the most viable approach for constructing an all-photonic quantum computer. Here we propose and demonstrate an integrated silicon photonic architecture that both entangles multiple photons, and encodes multiple physical qubits on individual photons, to produce error-protected qubits. We realise reconfigurable graph states to compare several schemes with and without error-correction encodings and implement a range of quantum information processing tasks. We observe a success rate increase from 62.5% to 95.8% when running a phase estimation algorithm without and with error protection, respectively. Finally, we realise hypergraph states, which are a generalised class of resource states that offer protection against correlated errors. Our results show how quantum error-correction encodings can be implemented with resource-efficient photonic architectures to improve the performance of quantum algorithms.