论文标题
学习的低精度图神经网络
Learned Low Precision Graph Neural Networks
论文作者
论文摘要
深图神经网络(GNNS)在一系列图形任务上显示出令人鼓舞的性能,但目前运行且缺乏用于DNN的许多优化。我们首次使用网络体系结构搜索(NAS)进行系统量化的GNN,这是如何系统地量化GNN的。我们定义了GNN的可能定量搜索空间。所提出的新型NAS机制(名为Low Precision Graph NAS(LPGNAS))限制了结构和定量选择是可区分的。 LPGNA学习了最佳体系结构,并在单个搜索回合中自动使用反向传播自动使用反向传播的不同组件的最佳定量策略。在八个不同的数据集上,解决了图中看不见的节点的分类的任务,LPGNA生成了量化模型,模型和缓冲区大小都显着降低,但与手动设计的网络和其他NAS结果相似。特别是,在PubMed数据集上,LPGNA显示出更好的尺寸准确性帕累托前沿,与其他七种手动和搜索的基线相比,与最佳NAS竞争者相比,型号尺寸的2.3倍降低了0.4%,但准确性提高了0.4%。最后,从我们在广泛的数据集上收集的定量统计数据中,我们建议W4A8(4位权重,8位激活)定量策略可能是天真GNN量化的瓶颈。
Deep Graph Neural Networks (GNNs) show promising performance on a range of graph tasks, yet at present are costly to run and lack many of the optimisations applied to DNNs. We show, for the first time, how to systematically quantise GNNs with minimal or no loss in performance using Network Architecture Search (NAS). We define the possible quantisation search space of GNNs. The proposed novel NAS mechanism, named Low Precision Graph NAS (LPGNAS), constrains both architecture and quantisation choices to be differentiable. LPGNAS learns the optimal architecture coupled with the best quantisation strategy for different components in the GNN automatically using back-propagation in a single search round. On eight different datasets, solving the task of classifying unseen nodes in a graph, LPGNAS generates quantised models with significant reductions in both model and buffer sizes but with similar accuracy to manually designed networks and other NAS results. In particular, on the Pubmed dataset, LPGNAS shows a better size-accuracy Pareto frontier compared to seven other manual and searched baselines, offering a 2.3 times reduction in model size but a 0.4% increase in accuracy when compared to the best NAS competitor. Finally, from our collected quantisation statistics on a wide range of datasets, we suggest a W4A8 (4-bit weights, 8-bit activations) quantisation strategy might be the bottleneck for naive GNN quantisations.